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Komandu olimpiāde „Atvērtā Kopa” 

 

11. klases uzdevumu atrisinājumi 

 

1. Katrai komandai jāizspēlē 16 spēles ar savas konferences komandām un 9 spēles ar pārējo 

konferenču komandām, tātad katra no 27 komandām izspēlē 25 spēles. Ja summē visu 

komandu izspēlētās spēles, iegūst 2527 . Bet šis skaits vēl jāizdala ar 2, jo, kad komandas 

spēlē savā starpā, spēle tiek ieskaitīta gan pie vienas komandas izspēlēto spēļu skaita, gan 

pie otras komandas izspēlēto spēļu skaita. Tātad kopējo spēļu skaits būs 5.337
2

2527



 , bet 

tas nav iespējams, jo spēļu skaitam ir jābūt naturālam skaitlim, tādēļ šāda čempionātā 

izspēles kārtība nav iespējama. 

 

2. Ievērosim, ka skaitļi uz Edgara metamā kauliņa dod atlikumu 2, dalot ar 4, t.i., mēs tos 

varam uzrakstīt formā 4k+2 (kur k – naturāls skaitlis). Uz Zanes kauliņa tad būs uzrakstīt 

skaitļi (4k+2)±1, 2, 3 un attiecīgi, metot abus kauliņus, skaitļu summa uz tiem būs (8k+4) 

±1, 2, 3 jeb 4(2k+2) ±1, 2, 3. Acīmredzams, ka skaitļu summa nedalīsies ar 4, tātad tā nekad 

nebūs 24, jo tas dalās ar 4. 

 

3. Invariantu metode. Sākotnējais skaitlis 2010 dalās ar 3. Arī skaits, par kuru katru minūti 

mainās konfekšu skaits, dalās ar 3. Tātad visi konfekšu skaiti, ko var iegūt, dalīsies ar 3. 

1010 nedalās ar 3. Tātad konfekšu skaits kārbā nekad nevar būt 1010. 

 

4. Trapece tiek dalīta 4 trapecēs, kurām sānu malas vienādas ar īsāko pamatu un šaurais leņķis 

ir 60°, kā arī tās visas ir vienādas savā starpā. 

 
 

5. Pieņemsim pretējo, ka nekādi 4 Orbitreki nesēž blakus. Apskatīsim katras 4 blakus esošas 

sēdvietas. Kopā ir 23 šādi sēdvietu četrinieki – jebkura sēdvieta un 3 no tās pa kreisi esošās 

sēdvietas veido šādu četrinieku. Saskaņā ar sākotnējo nosacījumu, nevienā no šiem 

četriniekiem nesēž vairāk par 3 Orbitrekiem. Tad, tā kā katrs Orbitreks sēž 4 šādos 

četriniekos, maksimālais Orbitreku skaits, kas var sēdēt pie galda, ir 
4
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4

323



 , t.i., 17 

Orbitreki. Bet tas ir pretrunā ar uzdevuma nosacījumiem, ka sanāksmē piedalās un pie galda 

sēž 18 Orbitreki. Tātad katrā sapulcē būs tādi 4 Orbitreki, kas sēž viens otram blakus. 
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6. Lai atrastu atšķirīgo monētu ar 3 svēršanām, mēs varam izmantot šādus divus algoritmus: 

Algoritms I 

Par īstām sauksim tās 5 monētas, kura savās starpā ir vienādas arī pēc svara. 

Sveram 2 monētas vienā pusē un 2 monētas otrā sviru svaru pusē. 

1. svēršana    OO=OO    OO<OO 

Ir iespējami divi gadījumi: 

1) svari ir līdzsvarā – visas 4 svēršanā izmantotās monētas ir īstas; 

Tagad izvēlamies vienu no 4 īstajām monētām un nosveram ar vienu no nenosvērtajām. 

2. svēršana (1.gad)    O=O      O<O 

Atkal ir iespējami divi iznākumi: 

a) abas monētas sver vienādi, tad mēs esam atraduši 5 īstās monētas un pēdējā 

nenosvērtā ir atšķirīgā; 

b) svari nav līdzsvarā, tātad monēta, kuru mēs paņēmām no divām atlikušajām, ir arī 

atšķirīgā. 

Šo metodi, kā ar vienu svēršanu atrast atšķirīgo monētu, ja ir zināmas vismaz 4 īstās 

monētas, sauksim par metodi A. 

 

2) viena puse ir vieglāka – atšķirīgā monētā ir starp 4 nosvērtajām monētām, atlikušās 2 abas 

ir īstas.  

2. svēršana (2.gad)    OO=OO   OO<OO 

1) Ja svari būs līdzsvarā, tad starp divām šajā svēršanas reizē nesvērtajām monētām būs 

atšķirīgā monēta, bet 4 nosvērtās monētas visas būs īstas. Tad, izmantojot metodi A, 

atradīsim atšķirīgo monētu. 

2) Ja svari nebūs līdzsvarā, tad starp tām divām monētām, kuras svērām jau otro reizi, būs 

atšķirīgā (pārējās 4 būs īstas). 3. svēršanas reizē ar metodi A atradīsim atšķirīgo monētu. 

Algoritms II 

Sadalām dotās 6 monētas 3 pāros. Ar pirmajām divām svēršanas reizēm nosveram jebkurus 

2 no šiem 3 pāriem.  

1. un 2. svēršana  O=O O=O   O=O O<O 

Ir iespējami divi gadījumi: 

1) abās svēršanas reizēs svari bija līdzsvarā. Tātad visas 4 svērtās monētas ir īstas, un 

atšķirīgā monēta ir viena no 3. pāri esošajām. 3. svēršanas reizē līdzīgi ar metodes A 

palīdzību spēsim atrast atšķirīgo monētu. 

2) vienā no svēršanas reizēm svari nebija līdzsvarā. Priekš 3. svēršanas reizes tad izvēlamies 

vienu monētu no pāra, kurš nebija līdzsvarā, un vienu monētu no pāra, kurš bija līdzsvarā, 

(skaidrs, ka šī monēta būs īstā). Ja šoreiz svari ir līdzsvarā, tad atšķirīgā monēta ir tā, kura 

tika paņemta no līdzsvarā esošajiem svariem. Savukārt, ja nav līdzsvarā, tad atšķirīgā 

monēta ir tā, kura tika izvēlēta no nelīdzsvarotajiem svariem. 

 

7. Mēs varam veikt šādas 3 substitūcijas: 

a + b = x 

b + c = y 

a + c = z 

Attiecīgi mēs varam pārrakstīt doto nevienādību par 
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kuru varam turpināt pārveidot: 
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Šī nevienādība būs spēkā, jo jebkuriem pozitīviem m un n izpildās nevienādība 2
m

n

n

m
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kura savukārt būs patiesa, jo            2
22




mn

nm
  

(pareizinot abas puses ar mn, vienādība saglabājas, jo reizinām ar pozitīvu skaitli) 

02 22  nmnm  

0)( 2  nm , 

un jebkura skaitļa kvadrāts ir nenegatīvs. 

 

8. Vienādības labo pusi dalot ar 8, atlikums ir 5. Tātad tas pats attiecas uz vienādības kreiso 

pusi. Kāds var būt atlikums, kvadrātu dalot ar 8? Apskatot kvadrātu atlikumus, dalot ar 8, 

iegūstam: 

x mod 8 0 1 2 3 4 5 6 7 
2x mod 8 0 1 4 1 0 1 4 1 

(pieraksts x mod 8 apzīmē skaitļa x atlikumu, dalot ar 8) Tā kā 2x mod 8  ir atkarīgs tikai no 

x mod 8, kurš savukārt var pieņemt tikai uzrakstītās 8 vērtības, iegūstam, ka kvadrāta 

atlikums, dalot ar 8 var būt tikai 0, 1 vai 4. Līdzīgi  22 y  mod 8 var būt tikai 0 vai 2. Nav 

iespējams izvēlēties tādus x un y, ka  )2( 22 yx  mod 8  ir vienāds ar 5. Tādēļ vienādība nav 

atrisināma veselos skaitļos. 

Piebilde: Šis spriedums nestrādātu otrā virzienā – ja eksistētu atrisinājums pēc mod 8, 

nebūtu garantēts atrisinājums sākotnējai vienādībai. 

 

9. Skaidrs, ka 99
2010

 < 100
2010

 un 2010
1345

 > 1000
1345

 

Tātad, ja 100
2010

 < 1000
1345

, tad arī 99
2010 

< 2010
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 K.b.j. 

 

10. Visupirms apskatīsim vispārīgo gadījumu ar šokolādes izmēru m x n . Ievērosim, ka pēc 

katras laušanas kopējais gabaliņu skaits var palielināties tikai par 1. Skaidrs, ka spēles 

beigās šokolāde būs pilnībā salauzta m∙n gabaliņos ar izmēru 1 x 1. Tad, zinot, ka sākotnēji 

bija viens vesels šokolādes gabals, kopā būs notikušas (m∙n - 1) laušanas. Ja m∙n ir nepāra 

skaitlis, tad laušanu skaits būs pāra skaits, tātad pēdējo gājienu izdarīs tas, kurš būs veicis 

otro gājienu, t.i., Līga, un viņa tad arī uzvarēs. Savukārt, ja m∙n ir pāra skaitlis, tad laušanu 

skaits būs nepāra skaits, un pēdējo, uzvarošo gājienu veiks tas, kurš uzsāka spēli - Jānis. Tā 
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kā a) gadījumā arī ir dota šokolāde ar pāra skaitu (6 x 8 ) gabaliņu, tad šajā gadījumā arī 

uzvarēs Jānis. 

 

11. Jebkuru k skaitli 
k

111...111  mēs varam izteikt, kā k10...10101 21  , kas ir ģeometriskā 

progresija ar progresijas koeficientu 10. Tādēļ pēc ģeometriskā progresijas locekļu summas 

formulas 
k
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 n

 

9

))10...1010(10( 10 nn 
, 

Un, vēlreiz pielietojot ģeometriskās progresijas locekļu summas formulu, mēs iegūtam 

meklēto funkciju 
9
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12. Apskatīsim visu uz tāfele uzrakstīto skaitļu reizinājumu. Sākotnēji tas būs 20102...642  . 

Ar katru gājienu, tas tiks samazināts 4 reizes. Tad, tā kā ar katru veikto gājienu uz tāfeles 

esošo skaitļu skaits samazinās par viens un sākumā bija 20092  skaitļu, tikai veikti 122009   

gājieni. Tādēļ skaidrs, ka k = 
12

2010

2009

4

2...642



. Apskatīsim, cik daudz ir skaitļu 2 starp 

reizinājuma 20102...642   pirmreizinātājiem. Tā kā visi skaitļi ir pāra, tad būs vismaz 20092  

divnieku. Tā kā tie ir viens otram sekojoši pāra skaitļi, tad katrs otrais skaitlis dalīsies ar 4, 

tātad būs vēl papildu 
2008

2009

2
2

2
  divnieku, attiecīgi katrs ceturtais skaitlis dalīsies ar 8, 

tātad būs vēl papildu 
2007

2009

2
4

2
  divnieku ... katrs 20092 -tais skaitlis dalīsies ar 20092 , tātad 

būs vēl papildu 1
2

2
2009

2009

  divnieks. Tādēļ reizinājumu 20102...642   mēs var izteikt kā 

M 1...222 200720082009

2 , kur M ir visu sākotnējo skaitļu visu nepāra pirmreizinātāju 

reizinājums. Zinot ģeometriskās progresijas summu, šajā reizinājumā mēs divnieka pakāpi 

var pārrakstīt: M



12

122010

2  jeb M122010

2 . 

 

13. Doto vienādību mēs varam apskatīt kā kvadrātvienādojumu, kuram mainīgais ir a: 

014 22  xaxa  

Varam aprēķināt diskriminantu D =    222
2

12414414  xxxxx . No šejienes 

var izteikt a kā funkciju no x: 
2

1

4

1

2

1214
)( 


 xx

xx
xfa . 

Lai reālos skaitļus atrisinātu vienādojumu 091432  xx , mēs var izmantot iepriekš 

iegūto funkciju un, ievietojot a = 3, iegūsim šādu vienādojumu: 
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2

1

4

1
3  xx  

Tā kā mums tāpat jāapskata abi + un - gadījumi, varam atmest moduli: 











2

1

4

1
3 xx  

Vispirms apskatīsim gadījumu 









2

1
x : 

4

1

2

7
 xx  

Ja 
2

7
x  un 

4

1
x , tad varam kāpināt abas puses kvadrātā un iegūstam 

4

1

4

49
72  xxx  

01262  xx  

Acīmredzami, ka diskriminats būs negatīvs D = 36 – 48 = -12, tātad atrisinājums šajā 

gadījumā neeksistē. 

Tagad apskatīsim gadījumu 









2

1
x :  

4

1

2

5
 xx  

Ja 
2

5

4

1
 x , tad varam kāpināt abas puses kvadrātā 

0662  xx  

D= 36 -24 = 12 

Tad kvadrātvienādojumu saknes būs x = 
2

126
 = 33 . Sakne 333  nederēs, jo 

citādi neizpildās nosacījums 
2

5
x  (savukārt 33  < 2). Tātad vienādojuma vienīgais 

atrasinājums ir 33 . 

 

14. Ļoti ticams skaidrojums varētu būt tas, ka Zolitūdes autobuss izbrauc minūti pēc Purvciema 

autobusa. Apskatīsim 10 minūšu intervālus starp katriem diviem Purvciema autobusiem. Ja 

Marta ierodas pieturā pirmajās 9 no šīm 10 minūtēm, tad pirmais pienāks Zolitūdes 

autobuss. Tikai tad, ja Marta pieturā ierodas starp 9. un 10. minūti, pirmais autobuss būs 

Purvciema autobuss. Līdz ar to, tikai aptuveni 10% gadījumu Marta aizbrauks uz 

Purvciemu. 

 

15. R - Rīga, J - Jūrmala. Pieņemsim, ka iDžejs sāk ceļu no punkta A, izmanto Jūrmalas 

teleportu vispirms, tad Rīgas (otru gadījumu pierāda līdzīgi). 

a) A - brīvi izvēlēts punkts, kas nepieder taisnei JR. AJ = JB, BR = RC, tātad - JR - trijstūra 

ABC viduslīnija, tātad AC || JR un AC = 2JR. Tātad iDžejs no koordinātas (x, y) var 

pārvietoties tikai uz koordinātu (x + 6, y + 2) vai (x - 6; y - 2). 
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b) Atsevišķi jāapskata vairāki gadījumi, kad A pieder taisnei JR: 

 I. A pieder nogrieznim JR, t.sk. galapunktos, 

 II. A atrodas otrpus R no J, 

 III. A atrodas otrpus J no R 

  i. ne lielākā attālumā kā JR, 

  i. lielākā attālumā kā JR. 

Arī šajā gadījumā AC = 2JR, turklāt pārvietoties var tikai pa taisni JR. Tātad arī šajā 

gadījumā iDžejs no koordinātas (x, y) var pārvietoties tikai uz koordinātu (x + 6, y + 2) vai 

(x - 6;y - 2). 

 

Izpētot pilsētas, kur vienas pilsētas koordināta ir (x, y), bet otras - (x + 6, y + 2), atrodam 3 

pārus: 

 Rīga un Cēsis, 

 Jēkabpils un Rēzekne, 

 Jelgava un Ogre. 


