
Komandu olimpiāde „Atvērtā Kopa”

11. klases atrisinājumi

1. Apskatām variantu, kad AD, BC – pamati. Novelk 
perpendikulus AE un DF pret taisni BC.

AE=DF=h (taisnstūra pretējās malas)

S  ABC =
1
2
⋅BC⋅h=S DBC 

S  ABC −S BOC =S DBC −S BOC 
S  ABO=S DCO

Gadījumā, ja trapeces pamati ir AB un CD, prasītie trijstūri nav vienādi.

Zīmējums 1

 

Zīmējums 2

 

Zīmējums 3

 

Zīmējums 4

2. Skat. zīmējumu Nr. 1.

3. Skat. zīmējumu Nr. 2.

4. a) Skat. zīmējumu Nr. 3, b) skat. zīmējumu Nr. 4.

5. Brīdī, kad finišē Ašais, viņš ir veicis 1000 m un Brašais tajā pašā laikā periodā ( t1 ) ir veicis 800 m, 

tādēļ V A=
1000

t 1
 ( V A ,V B ,V C  - attiecīgo zaķu skriešanas ātrumi), V B=

800
t1

 un 
V A

V B
=

1000
800 . 

Analogi, zinot, ka laikā t2  Brašais noskrien visu distanci un Cietušais ir noskrējis tikai 700 m, 

iegūstam, ka 
V B

V C
=

1000
700 . Veicam pārveidojumus 

V A

V B
⋅

V B

V C
=

V A

V C
=

1000⋅1000
800⋅700

=
1000
560 . No 

šejienes var secināt, ka brīdi t1 , kad Ašais noskrien 1000 m un finišē, Cietušais ir noskrējis 560 m 
un atrodas 440 m attālumā no finiša.



6. Izmantosim Vjeta teorēmu:

{x1x2=−p
x1x2=q

Tā kā dots, ka saknes sakrīt ar p un q vērtībām, x1  un x2  varam aizvietot ar attiecīgi p un q. 
Iegūstam:

{pq=−p
p⋅q=q

No otrā vienādojuma varam secināt, ka vai nu p=1  (līdz ar to q=q ), vai q=0  ( p⋅0=0 ). Līdz 
ar to iegūstam divus atrisinājumus:

{ p=1
q=−2

{p=0
q=0

7. 2abc? a3 – ab2 – ac2 |: a  (a ir trijstūra malas garums, tātad pozitīvs)
2bc?a2 – b2 – c2

b22bcc2? a2

bc2? a2

bc? a  (pēc trijstūra nevienādības)

8. Pēc grafika viegli noteikt f  x =0  saknes. Tās ir x1=−4, x2=−2, x3=0,5 , x4=2 . To zinot, 
varam uzrakstīt funkciju formā 

f  x = a  x – x 1   x − x 2   x − x 3  x − x 4 = a  x 4   x 2   x − 0 ,5   x− 2  . Lai atrastu a vērtību, 

varam noteikt f 0  . No grafika varam nolasīt, ka f 0 =16 . Aprēķinot 
f 0 = a⋅4⋅2⋅−0,5 ⋅−2 = a⋅8 . Līdz ar to a=2  un 
f  x = 2  x 4   x 2   x− 0,5   x− 2 =  x 4   x 2  2x− 1   x− 2  .

9. Novelk BG∥EA . 

BG∥FA
DG un DAuz vienas taisnes
DF un DB uz vienas taisnes}⇒DFA~DBG

BGC=EAD⇒GC=AD=DG=3AD⇒ k= AD
DG

=
1
3

S DBG =S DBC S BCG=S DBC S EAD 

S DBG =S BCDE
2

S BCDE 
2

=
3 S BCDE 

4

S DFA=k2⋅s DBG =
1
9
⋅

3 S BCDE 
4

=S BCDE 
12



10. Pieņemsim, ka nav iespējams no svariem noņemt 3 atsvarus tā, lai svari atkal būtu līdzsvarā. Kādā no 
svaru kausiem būs atsvars ar svaru 1 g Skaidrs, ka uz kausa būs vēl kāds atsvars, pieņemsim, ka 
vieglākais no tiem ir ar svaru z grami. Lai nevarētu noņemt 3 atsvarus, saglabājot līdzsvaru starp 
kausiem, šajā kausā jāatrodas arī atsvaram (z+1) g. Ja tas atrastos uz otra kausa, tad no pirmā kausa 
varētu noņemt 1 g un z g, bet no otrā (z+1) g, svari arvien paliktu līdzsvarā. Analogi mēs varam 
secināt par (z+2) g, (z+3) g, ..., n g atrašanos uz pirmā kausa. Saprotami, ja z = 2 g, tad uz pirmā 
kausa atradīsies visi atsvari, kas nav iespējams. Tamdēļ atsvars 2 g atrodas uz otra kausa. Zinot, ka uz 
pirmā kausā stāv 1 g, z g, (z+1) g, ..., n g, secinām, ka uz otra atradīsies pārējie atsvari – 2 g, 3 g, ..., 
(z-2) g, (z-1) g. Ja z≤5 , tad otrais kauss acīmredzot būs vieglāks par pirmo kausu, jo 
2+3+4<1+5+6+... Tātad (z-2) g un 2 g atsvari ir divi dažādi atsvari. Noņemot šos atsvarus no otrā 
kausa un z g no pirmā kausa, svari paliks līdzsvarā, kas ir pretrunā ar mūsu sākotnējo pieņēmumu. 
Tātad var noņemt 3 atsvarus, atstājot abas puses līdzsvarā.

11. Varam izteikt c kā k⋅m . Tad doto virkni varam sadalīt šādās k daļās (katrā daļā ir m locekļi): 

b ,2b , ... , bm
1. daļa

bm1 , bm2 , ... ,2m
2. daļa

...b k−1m1 , b k−1m2 ,... , bkm
k-tā daļa

. 

Uzrādīsim, ka šim dalījumam ir spēkā prasītie nosacījumi. Katra no daļām veido aritmētisko 

progresiju, tādēļ vispārīgi katras daļas locekļu summu mēs varam izteikt kā b⋅m⋅ib⋅mm1
2

 

(kur i = 0, 1, 2, ...(k-1)). Attiecīgi jebkuru divu daļu locekļu starpību var izteikt kā b⋅m⋅i . Izsakot b 
kā k⋅z , iegūstam k⋅z⋅m⋅i=z⋅c⋅i . Tātad katras daļas locekļu summu starpība dalās ar c un, tā kā 
nekādu divu daļu locekļu summas nav vienādas, tad to starpības nebūs nulle.

12. Veicam algebriskus pārveidojumus
abc  d e f 3 ad becf 

ad  aeaf bd be bf  cd ce cf  3ad3be3cf
2ad2be 2cf −ae− af − bd −bf −cd −cf 0

ad −bd−ae be be− ce−bf cf ad − cd −af cf  0
a− b  d −e b−c  e− f  a− c  d − f 0

Iegūtā nevienādība ir patiesa, jo
a−b  d − e 0  (no dotā ab , d  e  un a−b0, d−e0 )
b− c   e− f  0  (no dotā bc , e f  un b−c0, e− f 0 )
a− c  d − f  0  (no dotā a c , d f  un a−c0, d− f 0 ).

13. Apskatām vienā rindiņā uzrakstīto skaitļu reizinājumu. Apzīmēsim skaitli kreisajā stabiņā ar m.

a) Ja stabiņa labajā pusē ir pāra skaitlis (2n), tad nākamajā rindiņā skaitļu reizinājums nemainās – 
m⋅2n 2m⋅n .

b) Ja stabiņa labajā pusē ir nepāra skaitlis (2n + 1), tad nākamajā rindiņā abu skaitļu reizinājums ir 
par m mazāks – m⋅ 2 n+1  2m⋅n .



Kad pēc algoritma esam nonākuši pie rindiņas, kurā kreisajā pusē ir skaitlis m, bet labajā – 1, vēlreiz 
veicam dalīšanu un reizināšanu ar 2. Iegūsim vēl vienu rindiņu ar skaitļiem 2m un 0. Šo skaitļu 
reizinājums ir vienāds ar 0. 

Salīdzinot ar pirmo rindiņu, pēdējās rindiņas (tās, kurā labajā pusē ir 0) reizinājums ir samazinājies 
tieši par abu sākotnējo skaitļu reizinājumu. Tā kā skaitļu reizinājums no vienas rindiņas uz nākamo 
samazinās tikai gadījumos, kad labajā pusē ir nepāra skaitlis, turklāt tas samazinās par kreisajā pusē 
uzrakstīto skaitli ( m⋅2n1– 2n⋅n=m ), tad saskaitot visus kreisās puses skaitļus rindiņās, 
kurās labajā pusē ir nepāra skaitlis, iegūsim pirmās un pēdējās rindiņas skaitļu reizinājumu starpību – 
abu sākotnējo skaitļu reizinājumu.

14. Pēc katras spuldzīšu slēgšanas un telpas apskatīšanas reizes spuldzītes un slēdžus var sadalīt divās 
daļās – spuldzītēs, kuras netika ieslēgtas, un slēdžos, kuriem netika nomainīts stāvoklis, t.i., tie, kuri 
varētu ieslēgt neieslēgtās spuldzītes, un spuldzītēs, kuras tika ieslēgtas un slēdžos, kuriem tika 
nomainīts stāvoklis. Savukārt, nākamajā spuldzīšu slēgšanas un telpas apskatīšanās reizē katru no 
divām esošajām grupām, balstoties uz tajās ieslēgtajiem slēdžiem un iedegtajām spuldzītēm, varēsim 
sadalīt vēl divās grupās (tā kā slēdžiem un spuldzītēm var būt tikai 2 stāvokļi ieslēgts/izslēgts, tad 
katru no jau esošajām grupām varēsim sadalīt ne vairāk kā 2 citās grupās). Pēc k gājieniem dotās 
spuldzītēs būs sadalītas 2k  grupās. Skaidrs, ka brīdī, katrā grupā būs pa vienai spuldzītei, mēs visām 
spuldzītēm zināsim, kurš slēdzis tās ieslēdz. Tādēļ, lai pēc k gājieniem mēs zinātu, kuru spuldzīti 

ieslēdz, kurš slēdzis, jābūt spēkā sekojošai nevienādībai 
2n

2k≤1 , tātad 2n≤2k  un k≥n . Tātad 

minimālais nepieciešamais telpas apmeklējumu reižu skaits ir n (par to, ka ar n reizēm pietiek, varam 
pārliecināties pēc katras apmeklējuma reizes, dalot spuldzītes kā aprakstīts uzdevumā).

15. Ar S i  apzīmēsim naudas daudzumu, par kādu i-tajā gadā tiek veikta aizņēmuma pamatsummas 

atmaksa (i = 1, 2, 3 ... 10). Tad S i=12950 –0,05⋅K i , kur K i  ir i-tajā gadā atlikusī aizņēmuma 

daļa, un S i+1=12950 –0,05⋅K i –S i  . Varam pārliecināties, ka S i+1=1,05⋅S i . Tātad skaitļi S i  

veido ģeometrisko progresiju: S1, S 2 =S 1⋅1,05 ,S 3=S1⋅1,052 , .. . ,S 10 =S1⋅1,059 . Tā kā pēc 10 
gadiem jāatmaksā viss aizņēmums, tad maksimālais naudas apjoms P, ko Orbitreks varēs aizņemties, 
būs vienāds ar skaitļu S i  (katra gada atmaksāto daudzumu) summu. 

P=S1 +S1⋅1,05+S 1⋅1,052. ..+S1⋅1,059=S 1⋅
1 –1,0510 
1– 1,05 

=12950 – 0,05⋅P ⋅1– 1,0510 
1 –1,05 

. 

Pārveidojot iegūto vienādību, iegūstam



P+ 0,05 P⋅
1−1,0510 
1– 1,05 

=12950⋅
1−1,0510 
1 –1,05 

P 10,05⋅1 –1,0510 
1−1,05  =12950⋅

1−1,0510 
1 – 1,05 

P −0,050,05⋅1−1,0510  =12950⋅1−1,0510 
P −0,05⋅1,0510=12950⋅1 – 1,0510 

P=−
12950⋅1−1,0510 

0,05⋅1,0510

Varam aprēķināt, ka P ≈ 99990.


