
Komandu olimpiāde matemātikā
Atrisinājumi 11. klasei

1. Arbūza sastāvā ir 99% ūdens, tomēr, kad to atstāja saulē uz stundu, daļa ūdens iztvaikoja, un tagad tikai
98% arbūza ir ūdens. Kādu daļu sākotnējās masas arbūzs ir zaudējis?

Risinājums 1:
Pieņemsim, ka arbūzamasa ir 100 arbūzēni, saīsināsim kā 100 az (mērvienība ir izdomāta, bet tā, kāmums
interesē tikai masu attiecības, tadmērvienības nav tik svarīgas). Tātad sākumā ūdens sver 99 az un sausais
atlikums sver 1 az. Pēc izžūšanas, mums ir 98% ūdens, un tātad 2% sausnes. Sausnes masa nav mainīju-
sies, tātad

2% = 1 az

98% = ūdens pēc saules

Reizinam šķērsām un iegūstam, ka ūdens pēc saules = 1·98
2 = 49 az. Tātad arbūzs tagad sver 49+ 1 = 50

az, tātad pazaudēja 50 az, kas atbilst 50% no sākotnējās masas.

Risinājums 2:
a - arbūza kopējā masa
u - ūdens masa arbūzā sākumā
z - zaudētā ūdens masa

u
a
=

99
100

⇔ 100u = 99a

u− z
a− z

=
98
100

⇔ 100u− 100z = 98a− 98z

100u− 98a = 2z ⇔ 99a− 98a = 2z ⇔ a = 2z ⇔ 0.5 · a = z

tātad zudumi z ir puse no sākotnējās masas.

Risinājums 3:
a - arbūza kopējā masa
b - arbūza sausnes masa
z - zaudētā ūdens masa

b
a
= 1− 99

100
=

1
100

b
a− z

=
2

100
Tas nozīmē, ka

a− z
a

=
b
a
b

a−z

=
1
2
⇔ 1− z

a
=

1
2
⇔ z

a
=

1
2

2. Dotas septiņas vienādas riņķa līnijas ar rādiusu 1 cm, kas pieskaras viena otrai kā parādīts 1. zīmējumā.
Aprēķināt iekrāsotās daļas laukumu.
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1. zīm.

Risinājums:

2. zīm.

Sagriežamdotās figūras riņķa līnijas trešdaļās un pārvietojam tās, kā parādīts 2. zīmējumā, iegūstot regulā-
ru sešstūri ar malas garumu 2 cm. Tālāk, ievērosim, ka regulārs sešstūris sastāv no sešiem regulāriem trij-
stūriem ar malas garumu 2 cm. Tālāk, izmantojam regulāra trijstūra laukuma formulu S = a2

√
3

4 =
√
3 cm2.

Tātad sešstūra laukums ir 6
√
3 cm2 un līdz ar to arī sākotnējās iekrāsotās daļas laukums ir 6

√
3 cm2.

3. Ingus un Jānis pamīšus novieto jauna veida šaha figūras - “vēzīšus” - uz n × n rūtiņu šaha galdiņa. 3.
zīmējumā iekrāsoti lauciņi, kurus apdraud vēzītis.

3. zīm.

Katrā gājienā spēlētājs novieto vienu vēzīti tā, lai tas neapdraudētu nevienu citu jau novietotu vēzīti. Zaudē
tas spēlētājs, kurš nevar veikt gājienu. (Vēžīši spēles gaitā nepārvietojas.)

Kādiem n vienmēr uzvarēs Ingus, un kādiem - Jānis, ja Ingus sāk?

Risinājums:
Ievērosim, ka neviens vēzītis nevar apdraudēt sev “centrāli simetrisko” vēzīti. Tas ir, jamēs atrodamgaldiņa
centru, tad, ja vēzītis apdraudētu kādu lauciņu, kas ir centrāli simetrisks, tad mēs iegūtu, ka centrs atrodas
pa vidu kādai rūtiņas malai, bet tas nav iespējams, jo, ja galdiņš ir kvadrāts tad centrs atrodas vai nu uz
rūtiņas stūra vai pa vidu rūtiņai.
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Līdz ar to, ja n - pāra, tad centrs atrodas uz stūra. Ievērosim, ka otrais spēlētais var spoguļot pirmā spēlētāja
gājienus pret galdiņa centru. Tā kā pirmā spēlētāja vēzītis nekad nevarēs apdraudēt sev centrāli simetrisko,
tad otrajam spēlētājam vienmēr būs gājiens, ko atbildēt pirmajam. Tā kā pirmajam kaut kad beigsies
gājieni, tad viņš noteikti zaudēs. Līdz ar to pāra n uzvar otrais spēlētājs.

Ja n ir nepāra, tad centrs ir rūtiņai pa vidu, un ievērosim, ka pirmais spēlētājs var ielikt vēzīti galdiņa centrā
un turpmāk spoguļot otrā spēlētāja gājienus attiecībā pret centru. Līdzīgi kā iepriekš, iegūstam, ka pirmais
spēlētājs vienmēr uzvar nepāra n.

4. Jānim ir 99 flīzes, ar kurām viņš vēlas noklāt vannas istabas sienu. Kāds ir mazākais skaits flīžu, kādu viņam
ir jānokrāso, obligāti jānokrāso vismaz viena flīze, lai būtu iespējams ar flīzēm izklāt taisnstūra laukumu tā,
lai visās rindās būtu vienāds skaits nokrāsoto flīžu un visās kolonās būtu vienāds nokrāsoto flīžu skaits?
Flīžu skaitam rindā un flīžu skaitam kolonnā ne obligāti jāsakrīt. Flīze vienmēr tiek nokrāsota pilnībā, un
flīzes nedrīkst pārgriezt. Taisnstūra izmērus Jānis izvēlas pats, bet taisntūrī ir jābūt izmantotām visām 99
flīzēm.

Risinājums:
Apzīmēsim minimālo skaitu ar skaitli n. Ar x apizīmēsim raisnstūra rindu skaitu un ar y kolonnu skaitu.
Ievērojam to, ka x · k1 = y · k2, kur k1, k2 ir nokrāsoto flīžu skaits attiecīgi kolonnā un rindā. Ievērojam vēl,
ka n = x · k1 un n = y · k2, kur n ir kopējais nokrāsoto flīžu skaits.

Tātad n ≥ mkd(x, y), kur mkd(x, y) ir mazākais kopīgais x un y dalāmais, jo x dala n un y dala n. Ievērosim
vienādību mkd(x, y) = xy

lkd(x,y) , kur lkd(x, y) ir skaitļu x un y lielākais dalītājs. Tātad mums pietiek atrast
lkd(x, y) lielāko iespējamo vērtību lai atrastu n mazāko iespējamo vērtību, jo x · y = 99 ir fiksēts.

lkd(x, y) lielākā vērtība ir 3 (tas seko no dalījuma pirmreizinātājos 99 = 32 · 11, un to var pierādīt sastādot
mazu tabuliņu ar visiem iespējamajiem dalītāju pāriem). Tātad n ≥ 99

3 = 33.

Par laimi eksistē tieši konstrukcija šim gadījumam. Paņemam x = 33; un y = 3. Tad aizpildam visu taisn-
stūri kā parādīts zemāk:

…
…
…

5. Par maizīgu sauksim reālu pozitīvu skaitļu kopu ar ne mazāk kā diviem elementiem, kurai izpildās nosacī-
jums:

Ja kopai pieder skaitļi a un b, kur a < b, tad kopai pieder arī skaitlis a
b + 1. Piemēram, visu reālo pozitīvo

skaitļu, kas mazāki par 2, kopa ir maizīga, turklāt šī kopa ir arī bezgalīga, jo satur bezgalīgi daudz skaitļu.

a) Atrast vismaz vienu galīgu (satur galīgu skaitu skaitļu) maizīgu kopu.

b) Pierādīt, ka ir bezgalīgi daudz galīgu maizīgu kopu.

Risinājums:

a) Der, piemēram, kopa {1.5;3}, jo ir tikai viens pāris a < b, a = 1.5 un b = 2, un no šī pāra izriet, ka
kopai ir jāpieder elementam 1.5

3 + 1 = 0.5+ 1 = 1.5, kas tai jau pieder, Tātad kopa ir maizīga.

b) Ievērosim, ka jebkuram 1 < a < 2 izpildās a < a
a−1 , līdz ar to kopa {a; a

a−1} ir maizīga, jo a
a

a−1
+ 1 =

a− 1+ 1 = a, kas jau pieder kopai.

6. Dots regulārs 4k stūris (k ir naturāls skaitlis), kas sadalīts paralelogramos. Pierādīt, ka ne mazāk kā k para-
lelogrami šajā dalījumā ir taisnstūri.

Risinājums:
Ievērosim, ka regulāram 4k-stūrim ir 2k pāri paralēlu malu. Turklāt, katram no 2k paralēlo malu pāriem
atbilst viens perpendikulāru malu pāris. Tātad ir k pa pāriem perpendikulāru un pa pāriem paralēlu četru
malu komplektu.
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Par “paralelogramu ķēdi” sauksim nepārtrauktu paralelogramu virkni, kas savieno divas pretējas paralēlas
malas, kā tas parādīts 4. zīmējumā. Katrām divām paralēlām malām eksistē nepārtraukta paralelogramu
ķēde, jo uz katras 4k-stūra malas balstās vismaz viens paralelograms, savukārt šim paralelogramam ir
mala, kas ir paralēla 4k-stūra malai, un uz paralelogramam malas balstās vēl viens un tā tālāk, līdz mēs
sasniedzam pretējo 4k-stūra malu.

4. zīm. 5. zīm.

Ievērosim, ka, jamēs apskatamparalelogramu ķēdi, kas atbilst perpendikulārajammalu pārim, tad noteikti
ir viens paralelograms, kas pieder abām paralelogramu ķēdēm, kā parādīts 5. zīmējumā. Ievērosim, ka
kopējais paralelograms noteikti ir taisnstūris, jo tā malas ir paralēlas perpendikulārām 4k-stūra malām.

Tā kā ir k pa pāriem perpendikulāru un pa pāriem paralēlu četru malu komplektu, tad ir arī vismaz k taisn-
stūru, kas bija jāpierāda.

7. Kāds ir garākais iespējamais derīgas bums ķēdes garums, kādu var iegūt, spēlējot spēli Bums (skatīt spēles
noteikumus pielikumā)?

Risinājums:
Eksistē bums ķēde garumā 4, piemēram: Āro: 10 (cipariski salikts) Karels: bums! (jo 11 ir pirmskaitlis)
Mērija: bums! (jo 1 + 2 = 3 ir pirmskaitlis) A: bums! (jo 13 ir pirmskaitlis) K: bums! (jo 1 + 4 = 5 ir
pirmskaitlis) M: 15 (cipariski salikts) Kā redzams, četras reizes pēc kārtas tika pateikt bums!.

No otras puses, mēģināsim pierādīt, ka nav iespējams pateikt bums! piecas reizes pēc kārtas (un līdz ar to
arī vairāk kā piecas reizes pēc kārtas), ja neviens nekļūdās.

Vispirms ievērosim, ka starp pirmajiem desmit skaitļiem noteikti nav prasītās virknes, līdz ar to turpmāk
izteiktie spriedumi attieksies tikai uz skaitļiem ar diviem vai vairāk cipariem.

Ja skaitlis dalās ar 3, tad tas nav cipariski salikts tikai gadījumā ja tā ciparu summa ir 3 (pirmskaitlis 3 netiek
apskatīts pēc iepriekš apspriestā). 3 var izteikt kā ciparu summu tikai divos veidos 1+1+1 vai 1+2. Līdz ar
to iegūstam, ka skaitlis vai nu satur 3 vieniniekus un pārējās nulles, vai nu vieninieku, divnieku un pārējās
nulles. Līdz ar to tas beidzas ar 0,1 vai 2.

Katrā bums! ķēdē garumā vismaz 5 noteikti tiks iekļāuts vismaz viens skaitlis, kas dalās ar 3. Sauksim šo
skaitli par a. Ievērosim, ka a beidzas ar 0,1,2, līdz ar to a+3 beidzas ar 3,4,5 un a−3 ar 7,8,9. Ievērosim,
ka gan a+ 3 gan a− 3 arī dalās ar 3, bet neviens no tiem nebeidzas ar 0,1,2, tātad gan a+ 3, gan a− 3 is
cipariski salikti.

tas nozīmē, ka, ja eksistē bums! ķēde garumā 5, tad tā noteikti satur skaitļus a− 2,a− 1,a,a+ 1,a+ 2.

Ja a beidzas ar 2, tad a− 2 ir pāra, jo beidzas ar 0, un tā ciparu summa ir 1, tātad tas ir cipariski salikts, un
a nevar beigties ar 2.

Ja a beidzas ar 1, tad a + 1 ir pāra un tā ciparu summa ir 4, līdz ar to tas ir cipariski salikts, un a nevar
beigties ar 1.

Ja a beidzas ar 0, tad apskatam a + 1 atlikumu dalot ar 11, tā kā a satur vai nu trīs vieniniekus un pārējās
nulles, vai nu vienu vieninieku un vienu divnieku, un a beidzas ar 0, tad a + 1 satur četrus vieniniekus un
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pārējās nulles vai vienud divnieku, divus vieniniekus un pārējās nulles, turklāt iens vieninieks ir pirmais
cipars. No tā varam secināt, ka a+ 1 dalot ar 11 dod atlikumu 0,2 vai 4.

Ja a + 1 dod atlikumu 0, tad a + 1 ir cipariski salikts, jo a + 1 dalās ar 11un tamdēļ nav pirmskaitlis, un tā
ciparu summa ir 4, kas nav pirmskaitlis.

Ja a+ 1 dod atlikumu 2 dalot ar 11, tad a− 1 nevar būt pirmskaitlis, jo tas dalās ar 11. a− 2 ir pāra, tādēļ
arī tas nevar būt pirmskaitlis. No otras puses, a−2 ciparu summa ir par 1 mazāka, kā a−1 ciparu summa,
jo a − 1 beidzas ar 9, tātad vai nu a − 1 vai a − 2 ciparu summa ir salikts skaitlis (jo viena ir pāra un otra
nepāra, un abas ir vismaz 8) līdz ar to, vismaz viens no a− 1 vai a− 2 ir cipariski salikts, pretruna.

Diemžēl, gadījumā, ja a + 1 dod atlikumu 4 dalot ar 11, tad pārliecinošs iemesls, kāpēc nevarētu eksistēt
šada veida bums ķēde uzdevuma autoram nav zināms.

Tomēr doto pierādījumu viegli var modificēt, lai pierādītu, ka neeksistē bums! ķēde garumā 6. Līdz ar to
garākās bums! ķēdes garums ir starp 4 un 5, un pagaidām, vai nevar eksistēt bums! ķēde garumā 5, ir
atvērts jautājums.

8. ∆ABC ievilktās riņķa līnijas centru apzīmēsim ar R. Pagarinot trijstūra ABC malas BC un AC, iespējams uz-
konstruēt riņķa līniju, kas ārēji pieskarasmalai AB un pārējomalu pagarinājumiem. Sauksim šīs riņķa līnijas
centru par P. Pierādīt, ka PR viduspunkts pieder trijstūra ABC apvilktajai riņķa līnijai.

Risinājums:
Apzīmēsim PR visudspunktu ar Q. Ievērosim, ka AR ir leņķa ∠CAB bisektrise, jo ievilktās riņķa līnijas centrs
atrodas bisektrišu krustpunktā, līdzīgi BR ir leņķa ∠CBA bisektrise.

Apzīmēsimmalas AC un ārējās riņķa līnijas pieskaršanās punktu ar X un BC pieskaršanās punktu ar Y, un AB
pieskaršanās punktu ar Z. Skaidrs, ka PZ = PX kā rādiusi, AP ir kopēja mala, un, tā kā ∠PZA = ∠PXA = 90◦,
tad pēc taisnleņķa trijstūru vienādības pazīmēm iegūstam, ka ∆PZA = ∆PXA, līdz ar to ∠PAB = ∠PAX, un
iegūstam, ka AP is ∠BAX bisektrise. Līdzīgi iegūstam, ka BP is leņķa ∠ABY bisektrise.

Tātad ∠RAP = 1
2∠CAB + 1

2∠BAX = 1
2 (∠CAB + ∠BAX) = 90◦. Līdzīgi, ∠RBP = 90◦. Bet no tā seko, ka R, A,P,B

atrodas uz vienas riņķa līnijas (pretējo leņķu summa ir 180◦), ar centru punktā Q, jo taisnais leņķis ∠RAP
vienmēr atrodas pret diametru, līdz ar to RP ir riņķa diametrs un tā viduspunkts Q ir riņķa līnijas centrs.

Ievērosim, ka ∠BRA = 180−∠RBA−∠RAB = 180− 1
2 (∠ABC+∠BAC) = 180− 1

2 (180−∠BCA) = 90+ 1
2∠BCA.

Savukārt no tā seko, ka ∠BPA = ∠180−∠BRA = 90− 1
2∠BCA, jo ap četrstūri RAPB var apvilkt riņķa līniju. Tā

kā centra leņķis ∠BQP balstās uz to loka BRA un leņķis BPA arī balstās uz loka BRA, tad ∠BQA = 2 · ∠BPA =

180 − ∠BCA. Bet tad ∠BQA + ∠BCA = 180◦, kas nozīmē, ka puntki A,B,C,Q atrodas uz vienas riņķa līnijas,
kas arī bija jāpierāda.

9. a) Katrā no 6. zīmējumā esošajiem tukšajiem lauciņiem ierakstiet skaitli tā, lai katrā aplītī ierakstītais
skaitlis būtu visu blakusesošo lauciņu vidējais aritmētiskais. Lauciņus sauc par blakusesošiem, ja tie
ir savienoti ar taisnu līniju zīmējumā.

6. zīm.
7. zīm.
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Piemēram, var pārbaudīt, ka 7. zīmējumā dotie skaitļi apmierina prasību, ka katrā aplītī ierakstītais
skaitlis ir visu blakusesošo lauciņu vidējais aritmētiskais.

b) Vai eksistē vēl kāda skaitļu kombinācija, kuru var ierakstīt 7. zīmējuma aplīšos tā, lai tiktu ievērots
vidējā aritmētiskā nosacījums? Kvadrātiņos ierakstītos skaitļus mainīt nedrīkst.

Risinājums:

a) Veigli pārbaudīt, ka 8. zīmējumā attēlotie skaitļi apmierina uzdevuma prasības.

8. zīm.

Prasītos skaitļus viegli var iegūt, ja apzīmē centrālajā aplītī ierakstīto skaitli ar x, un ievēro, ka apkārt
tam izvietojušies x+8

2 , x+0
2 , x+0

2 , x+0
2 , kas nozīmē, ka

x =
x+8
2 + x

2 + x
2 + x

2
4

⇒ x =
4x+ 8

8
⇒ x = 2

Kad iegūts centrālai skaitlis, iegūt pārējos kļūst ļoti vienkārši.

b) Pierādīsim, ka jebkurā režģī, kurā izpildās vidējā aritmētiskā nosacījums, visielākā un vismazākā vērtī-
ba ir ierakstīta kādā no kvadrātiņiem. Lai to pierādītu, ievērosim, ka katrs aplītis ir vidējais aritmētis-
kais no tam blakusesošajiem lauciņiem, līdz ar to tas ir ne lielāks, kā tam blakusesošie lauciņi, no kā
seko prasītais.
Tagad, pieņemsim, ka eksistē divi dažādi režģa aizpildījumi: a1,a2 . . .a9 un b1,b2 . . .b9 (9. un 10. zīme-
jumi), tad ievērosim, ka, ja no viena režģa ”atņemt” otru (skatīt 11. zīmējumu), tad rezultātā iegūstam
derīgu režģi, kuram visos kvadrātiņos ierakstītas nulles.

9. zīm. 10. zīm. 11. zīm.

Bet no tā seko, ka vislielākā un vismazākā vērtība ir 0, bet tad arī visas pa vidu ierakstītās vērtības ir
0, līdz ar to a1 − b1 = 0,a2 − b2 = 0, . . .a9 − b9 = 0, kas nozīmē, ka a1 = b1 . . .a9 − b9, līdz ar to abi
sākotnējie režģi ir vienādi. Tātad eksistē tieši viens veids, kā aizpildīt režģi, tā, lai tiktu ievērots vidējā
nosacījums.

10. Veikalā pārdod četru veidu augļus: ābolus, banānus, citronus un mandarīnus. Cik veidos var nopirkt tieši
četrus augļus (ne obligāti dažādus)?
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Risinājums 1.:
Apzīmēsim ar a ābolu skaitu pirkumā, ar b banānu skaitu pirkumā, ar c citronu skaitu pirkumā, ar m -
mandarīnu skaitu pirkumā. Ievērosim, ka dažādiem pirkumiem atšķirsies attiecīgo augļu skaits, līdz ar to,
katru pirkumu iespējams viennozīmīgi apzīmēt ar četru skaitļu komplektu (a,b, c,m).

Ievērosim, ka a + b + c +m = 4, jo beigās mēs nopērkam tieši 4 augļus, un a,b, c,m ≥ 0, jo nevar nopirkt
negatīvu skaitu augļu, bet ir iespējams kādu nenopirkt.

Pieņemsim, ka katrs auglis maksā 1 zelta monētiņu. Kopā mēs iztērēsim 4 monētiņas, bet lai būtu viltīgāk,
novietosim 8monētiņas rindiņā. Ievērosim, ak starp 8monētiņām ir 7 atstarpes. Izvēlēsimies trīs atstarpes
(to var izdatīt 7·6·5

1·2·3 veidos, jo pirmā būs viens no septiņām, otrā viena no sešām, trešā viena no piecām, bet
tad sanāk, kamēs katru atstarpīti ieskaitampar daudz, jomēs skaitamdažādas secības, kādās var izvēlēties
atstarpīti, tāpēc mēs izdalam ar dažādo trīs atstarpīšu sajaukumu skaitu, kas ir 1 · 2 · 3) un ievietojam tajās
pa stienītim.

Stienīši sadala dotās monētiņas četrās grupās. No katras grupas izņemsim vienu monētiņu. Tagad mums
ir četras grupiņas, katrā no tām ir 0 vai vairāk monētiņu, un kopā ir 4 monētiņas. Par pirmās kaudzītes mo-
nētiņām nopērkam ābolus, par otrās banānus un tā tālāk. Tā kā ir 7·6·5

1·2·3 = 35 veidi, kā izvēlēties atstarpītes,
tad ir arī 35 dažādi pirkumi.

Risinājums 2.:
Vienkārši šķirojam gadījumus: Ja visi augļi ir vienādi, tad ir 4 iespējas (aaaa, bbbb, cccc, mmmm)

Ja viens auglis atšķiras, bet pārējie ir vienādi, tad ir 4 · 3 = 12 iespējas (izvēlamies vienu, kat atšķirsies kā
vienu no 4 augļiem un trīs, kas neatšķirsies, no atlikušajiem 3), piemēram abbb, baaa, mccc.

Ja ir divi pāri vienādu augļu, piemēram aabb, tad ir 4·3
2 = 6 pirkumi, jo pirmo pār izvēlas no 4, otro no 3

atliušajiem augļiem, bet ir jāizdala ar 2, jo mēs ieskaitam pārus, kas ir apmainīti vietām divreiz.

Ja divi ir atšķirīgi un divi vienādi, piemēram abcc, tad ir 4 · 3 = 12 veidi - izvēlamies vienu no 4 augļiem, kas
nebūs šajā pirkumā un tad vienu no 3 atlikušajiem, ko nopirksim divreiz.

Ja visi ir atšķirīgi, tad ir 1 veids abcm.

Tātad kopā ir 4+ 12+ 6+ 12+ 1 = 35 pirkumi.

11. Atrast visus tādus naturālus skaitļus n ≥ 3, ka n4 − 5 dalās ar n2 − 5.

Risinājums:
Ievērosim, ka n2−5 dala n4−25 = (n2−5)(n2+5). Tas nozīmē, ka ja n2−5 dala arī n4−5, tad arī šo skaitļu
starpība n4 − 5 − (n4 − 25) = 20 dalās ar n2 − 5. Tā kā 20 ir tikai 6 pozitīvi dalītāji: 1,2,4,5,10,20, kas arī
ir iespējamās n2 − 5 vērtības (negatīvi dalītāji nav jāapskata, jo ja n ≥ 3, tad n2 − 5 ≥ 0) Tikai 4 un 20 dod
naturālas n vērtības, tātad n = 3 vai n = 5.

12. Pierādīt, ka trijstūrī pret garāko malu atrodas a) īsākais augstums; b) īsākā mediāna!

Risinājums:

a) Ievērosim, ka trijstūra laukums izsakās kā S = 1
2a·h. Līdz ar to varam izteikt h = 2S

a . Tā kā S ir nemainīgs
lielums jebkuram trijstūrim, tad vismazāko vērtību augstums h sasniedz tad, kad a ir vislielākais (dalot
ar lielāku skaitli iegūstammazāku skaitli). Tātad visīsākais augstums tiešām atrodas pret garākomalu.

b) Trijstūrī ABC novilksim visas trīs mediānas AP, BQ, QR, to krustpunktu apzīmēsim ar M. Nezaudējot
vispārību pieņemsim, ka CB ir garākā mala.
Nav grūti pierādīt, ka mediānas dala trijstūri sešos vienlielos (ar vienādu laukumu) trijstūros.
No P novilksim augstumu PS pret malu MB, un no R novilksim augstumu RT pret malu MB. Tā kā
trijstūru MPB un MRB laukumi ir vienādi, tad, tā kā pamats MB ir kopējs, tad augstumi sakrīt PS = RT.
Pielietojot Pitagora teorēmu, iegūstam, ka SB2 = PB2−PS2 = 1

4CB
2−PS2 un TB2 = BR2−RT2 = 1

4AB
2−PS2,

un, tā kā BC ≥ AB pēc pieņēmuma, tad SB2 = 1
4CB

2 − PS2 ≥ 1
4AB

2 − PS2 = TB2, līdz ar to SB ≥ TB. No
tā seko, ka SM = MB − SB ≤ MB − TB = MT, savukārt no tā seko, ka MP2 = SM2 + SP2 ≤ TM2 + SP2 =

TM2 + TR2 = MR2. Līdz ar to MP ≤ MR. Līdzīgi, apskatot MPQC, pierādam, ka MP ≤ MQ.
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Novilksim agstumu AU pret maluMR un agstumu BV pretMR. Līdzīgi kā iepriekš, iegūstam, ka AU = BV
kā augstumi, kas balstā uz vienu un to pašu pamatu vienlielos trijstūros. Ievērosim, ka, tā kā AC ≤ CB
pēc pieņēmuma, tad CU2 = CA2 − AU2 ≤ CB2 − AU2 = CB2 − BV2 = CV2. Līdz ar to CU ≤ CV, tātad arī
MU = CU − CM ≤ CV − CM = MV, tādēļ MA2 = MU2 + AU2 ≤ MV2 + AU2 = MV2 + BV2 = MB2, līdz ar to
MA ≤ MB. Līdzīgi, apskatot AMC, iegūstam, ka AM ≤ CM.
Apvienojot MP ≤ MR un AM ≤ MC, iegūstam, ka AP = AM +MP ≤ CM +MR = CR. Līdzīgi iegūstam, ka
AP ≤ BQ. Tātad AP ir īsākā mediāna, un patiesi tā atrodas pret garāko malu CB, kas bija jāpierāda.

13. Dots polinoms P(x) ar veseliem koeficientiem. Zināms, ka vienādojuma P (P (x)) = x vienīgie atrisinājumi
veselos skaitļos ir x = 0 un x = 1. Atrast visas iespējamās P(1) vērtības!

Risinājums:
Ievērosim, ka ja vienādojumam P(x) = x ir atrisinājums x, tad tas ir atrisinājums arī vienādojumam P(P(x)) =
x, jo tādā gadījumā P(P(x)) = P(x) = x. Līdz ar to vienādojumam P(x) = x var būt ne vairāk kā divi atrisinā-
jumi (ja to būtu vairāk, tad P(P(x)) = x būtu vairak par diviem atrisinājumiem).

Papildu, ja x ir vienādojuma P(P(x)) = x atrisinājums, un P(x) ̸= x, tad no tā, ka P(P(P(x))) = P(x), seko, ka
P(x) arī ir vienādojuma atrisinājums, tātad kopā ir divi dažādi atrisinājumi x un P(x). Tādēļ var būt ne vairāk
kā viena tāda x vērtība, ka P(P(x)) = x un P(x) ̸= x. Ja x = 1 ir šī vērtība, tad P(1) = 0, jo vienīgās P(P(x)) = x
saknes ir 0 un 1. Pretējā gadījumā, ja x = 1 nav šī vērtība, tad P(1) = 1.

Tātad vienīgie iespējamie atrisinājumi ir P(1) = 0 un P(1) = 1.

Ar to vēl nepietiek, ir jāatrod derīgi polinomi! Polinoms, kuram izpildās uzdevuma nosacījumi un P(1) = 1
ir P(x) = x2, jo P(P(x)) = x4 un x4 = x ⇔ x(x3 − 1) = 0 ir dieši divi atrisinājumi 0 un 1.

Polinoms, kuram izpildās uzdevuma nosacījumi un P(1) = 0 ir P(x) = (x− 1)2, jo

P(P(x)) = ((x− 1)2 − 1)2 = (x− 1)4 − 2(x− 1)2 + 1

un vienādojums
(x− 1)4 − 2(x− 1)2 + 1− x = 0

pārrakstās kā
(x− 1)4 − 2(x− 1)2 − (x− 1) = 0

Jeb
(x− 1)((x− 1)3 − 2(x− 1)− 1) = 0

(x− 1)(x3 − 3x2 + 3x− 1− 2x+ 2− 1) = 0

(x− 1)(x3 − 3x2 + x) = 0

x(x− 1)(x2 − 3x+ 1) = 0

Viegli pārbaudīt, ka x2 − 3x+ 1 nav veselu sakņu, līdz ar to P(x) = (x− 1)2 apmierina nosacījumus.

14. Saskaitīšanas ķēde ir n skaitļu virkne a1,a2, . . . ,an, kurā a1 = 1 un jebkuram citam virknes loceklim ai
eksistē divi tādi virknes locekļi aj un ak (iespējams vienādi), ka j ≤ k < i un ai = aj + ak.

Piemēram, (1,2,3,5,7,10) ir saskaitīšanas ķēde, jo 2 = 1 + 1, 3 = 2 + 1, 5 = 2 + 3, 7 = 2 + 5, 10 = 3 + 7.
(1,2,3,5,10) ir cita saskaitīšanas kēde, kuras pēdējais loceklis arī ir 10, turklāt tā ir īsāka.

Dots skaitlis k < 2t, pierādiet, ka eksistē tāda saskaitīšanas ķēde a1,a2, . . .an, ka an = k un n ≤ 2 · t.

Risinājums:
Izmantosim indukciju lai pierādītu, ka visiem pāra skaitļiem n < 2t eksistē virkne, kuras garums nepār-
sniedz 2t− 1, un visiem nepāra skaitļiem n < 2t eksistē virkne, kuras garums nepārsniedz 2t.

Indukcijas Bāze: Ievērosim, ka (1) ir derīga virkne, kas beidzas ar 1, un tajā ir 1 < 2 · 1 skaitļi.
Induktīvais pieņēmums: Pieņemsim, ka visiem naturāliem k < n izpildās prasītais.
Induktīvā Pāreja:
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1) Ja n - pāra, teiksim n = 2m < 2t, tad ievērosim, ka no induktīvā pieņēmuma seko, ka priekš m eksistē
derīga skaitīšanas virkne (a1,a2 . . .m) kuras garums nepārsniedz 2(t − 1) (jo m = n

2 < n un m =
n
2 < 2(t − 1)). Bet tad virkne, kuru mēs iegūstam pievienotjot iepriekšējai skaitīšanas ķēdei 2m, proti
(a1,a2 . . .m,2m), ir derīga skaitīšanas ķēde, kas beidzas ar 2m = n, jo 2m = m+m, un virknes garums
nepārsniedz 2 · (t− 1) + 1 = 2 ∗ t− 1.

2) Ja n - nepāra, n = 2m+ 1 < 2t, tad ievērosim, ka n− 1 = 2m < 2t ir pāra, līdz ar to eksistē skaitīšanas
ķēde, kas beidzas ar 2m, proti (a1,a2 . . .2m), kuras garums nepārsniedz 2t − 1 izmantojot induktī-
vo pieņēmumu. Bet tad mēs varam šo skaitīšanas ķēdi pagarināt ar 2m + 1, iegūstot derīgu ķēdi
(a1,a2 . . .2m,2m+ 1), jo 2m+ 1 = 2m+ a1, un tās garums nepārsniedz 2t− 1+ 1 = 2t.

Tas pabeidz indukciju un arī pierādījumu.

15. Uz trijstūra ABC malas AB atlikts punkts D, un uz malas BC atlikts punkts E tā, ka DE paralēls AC. Taišņu CD
un AE krustpunktu apzīmēsim ar T.

Pierādīt, ka taisne BT dala nogriežņus DE un AC uz pusēm (iet cauri viduspunktiem).

Risinājums:
BT un DE krustpunktu apzīmēsim ar X, BT un AB krustpunktu ar Y. Ievērosim, ka SADC = SAEC, jo abiem
trijstūriem sakrīt augstums, tā kā DE||AC, un tiem ir kopējs pamats AC. Līdz ar to arī SATD = SCTE, jo SATD +

SATC = SADC = SAEC = SCTE + SATC.

Ievērosim, ka SATD
SDTB

= AD
DB , jo abiem trijstūriem sakrīt augstums. Līdzīgi SCTE

SETB
= CE

EB .

Tā kā ∆DBE ∆ABC, tad AB
DB = BC

BE , bet tad arī AD
DB = AB

DB − 1 = BC
BE − 1 = CE

BE .

Tas nozīmē, ka SATD
SDTB

= AD
DB = CE

EB = SCTE
SETB

, bet tā kā SATD = SCTE, tad arī SDTB = SETB, līdz ar to SATB = SCTB.

Visbeidzot, SATB
SCTB

= AY
YC , jo abiem trijstūriem ir kopējs pamats BT, un dēļ līdzības, abu trijstūru augstumi attie-

cas tā pat kā malas AY un YC.

Bet tas nozīmē, ka AY = YC, kas bija jāpierāda. Vienādība DX = XE seko no trijstūru BDX un BAY līdzības un
trijstūru BEX un BCY līdzības.
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Pielikums

Spēles Bums apraksts:
Sauksim skaitli par cipariski saliktu, ja tas nav pirmskaitlis un tā ciparu summa nav pirmskaitlis.
(Pirmskaitlis ir skaitlis, kas dalās tieši ar diviem skaitļiem: ar sevi un ar 1. Piemēram, 5,13,29 ir pirmskaitļi,

bet, piemēram, 4 = 2 · 2 = 1 · 4,20 = 4 · 5 = 2 · 10,111 = 3 · 37 = 1 · 111 nav. Skaitlis 1 nav pirmskaitlis, jo dalās
tikai ar vienu skaitli, nevis diviem)

Sastājies aplī ar 3− 7 draugiem un sagatavojies aizraujošai spēlei!
Spēle sākas, kad kāds nosauc cipariski saliktu skaitli, un gājiens pāriet pie nākošā spēlētāja pulksteņa rādītāja

virzienā.
Nosauktais skaitlis kļūst par “spēles skaitli”, un katru gājienu tā vērtība palielinās par 1 (neatkarīgi no tā, ko

pateica iepriekšējais spēlētājs).
Gājieni norisinās pa apli, un mērķis ir saprast pēc iespējas ātrāk, vai tagadējais spēles skaitlis ir cipariski

salikts, vai nē.
Kad pienāk tava kārta:
a) Ja spēles skaitlis ir cipariski salikts, tad tev tas ir skaļi jānosauc.

b) Ja tas nav cipariski salikts, tad ir jāsaka bums!.

c) Ja tu vilcinies par ilgu un nevari izdomāt vai pasaki nepareizi, tad tev ir jāiziet no apļa, un spēle sākas no
jauna ar atlikušajiem spēlētājiem.

Par bums ķēdi sauksim nepārtrauktu virkni ar bums! izsaucieniem no spēlētājiem. Derīga bums ķēde ir tāda,
kuras gaitā neviens no spēlējājiem nav kļūdījies ar savu bums! izsaucienu. Par bums ķēdes garumu sauksim
kopējo bums! izsaucienu skaitu ķēdē.

Piemērs spēlei starp trim spēlētājiem: Āro (A), Karelu (K) un Mēriju (M):

1. Āro pasaka 46 (tas ir cipariski salikts),

2. Karels iesaucas bums! (jo 47 ir pirmskaitlis),

3. Mērija saka 48 (tas ir cipariski salikts),

4. A: bums! (49 ciparu summa ir pirmskaitlis),

5. K: bums! (50 ciparu summa ir pirmskaitlis),

6. M: 51 (cipariski salikts),

7. A: bums! (52 ciparu summa ir pirmskaitlis)

8. K: bums! (53 ir pirmskaitlis)

9. M: 54 (tas ir cipariski salikts)

10. A: 55 (tas ir cipariski salikts)

11. K: 56 (kļūda, 56 ciparu summa ir pirmskaitlis, tādēļ 56 nav cipariski salikts un bija jāsaka bums!)

12. Spēle sākas no jauna

Šajā spēlē garākās derīgās bums ķēdes garums ir 2, un ir divas derīgas bums ķēdes šādā garumā, viena,
kad spēles skaitlis ir 49 un 50, otra, kad spēles skaitlis ir 52 un 53.
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